Visual Gesture Recognition by a Modular Neural System
نویسندگان
چکیده
The visual recognition of human hand pointing gestures from stereo pairs of video camera images provides a very intuitive kind of man-machine interface. We show that a modular, neural network based system can solve this task in a realistic laboratory environment. Several neural networks account for image segmentation, estimation of hand location , estimation of 3D-pointing direction, and necessary transforms from image to world coordinates and vice versa. The functions of all network modules can be learned from data examples only, by exploiting various learning algorithms. We investigate the performance of such a system and dicuss the problem of operator-independent recognition.
منابع مشابه
Visual gesture-based robot guidance with a modular neural system
We report on the development of the modular neural system "SEEEAGLE" for the visual guidance of robot pick-and-place actions. Several neural networks are integrated to a single system that visually recognizes human hand pointing gestures from stereo pairs of color video images. The output of the hand recognition stage is processed by a set of color-sensitive neural networks to determine the car...
متن کاملHand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملReal time gesture recognition using continuous time recurrent neural networks
This paper presents a new approach to the problem of gesture recognition in real time using inexpensive accelerometers. This approach is based on the idea of creating specialized signal predictors for each gesture class. These signal predictors forecast future acceleration values from current ones. The errors between the measured acceleration of a given gesture and the predictors are used for c...
متن کاملAlireza Behrad and Saeed Akbari Implementing a Visual Servoing System for Robot Controlling
Nowadays, with the emerging of the new applications like robot control in image processing, artificial vision for visual servoing is a rapidly growing discipline and Human-machine interaction plays a significant role for controlling the robot. This paper presents a new algorithm based on spatio-temporal volumes for visual servoing aims to control robots. In this algorithm, after applying necess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996